NOAA Space Weather Scales | NOAA (2024)

NOAA Logo

NWS Logo

NOAA Space Weather Scales | NOAA (2)

Organizations

Space Weather Prediction Center

National Oceanic and Atmospheric Administration

Tuesday, August 06, 2024 16:50:21

Main menu

  • Home
  • About Space Weather
    • Impacts
      • Electric Power Transmission
      • GPS Systems
      • HF Radio Communications
      • Satellite Communications
      • Satellite Drag
      • Space Weather Impacts On Climate
    • Partners and Stakeholders
      • Commercial Service Providers
      • Federal Agencies
      • International Organizations
      • International Service Providers
      • Space Weather Research
    • Phenomena
      • Aurora
      • Coronal Holes
      • Coronal Mass Ejections
      • Earth's Magnetosphere
      • F10.7 cm Radio Emissions
      • Galactic Cosmic Rays
      • Geomagnetic Storms
      • Ionosphere
      • Ionospheric Scintillation
      • Radiation Belts
      • Solar EUV Irradiance
      • Solar Flares (Radio Blackouts)
      • Solar Radiation Storm
      • Solar Wind
      • Sunspots/Solar Cycle
      • Total Electron Content
    • Additional Info
      • NOAA Space Weather Scales
  • Products and Data
    • Forecasts
      • 27-Day Outlook of 10.7 cm Radio Flux and Geomagnetic Indices
      • 3-Day Forecast
      • 3-Day Geomagnetic Forecast
      • Forecast Discussion
      • Predicted Sunspot Numbers and Radio Flux
      • Report and Forecast of Solar and Geophysical Activity
      • Solar Cycle Progression
      • Space Weather Advisory Outlook
      • USAF 45-Day Ap and F10.7cm Flux Forecast
      • Weekly Highlights and 27-Day Forecast
    • Reports
      • Forecast Verification
      • Geoalert - Alerts, Analysis and Forecast Codes
      • Geophysical Alert
      • Solar and Geophysical Event Reports
      • USAF Magnetometer Analysis Report
    • Models
      • Aurora - 30 Minute Forecast
      • CTIPe Total Electron Content Forecast
      • D Region Absorption Predictions (D-RAP)
      • Geospace Geomagnetic Activity Plot
      • Geospace Ground Magnetic Perturbation Maps
      • Geospace Magnetosphere Movies
      • North American (US Region) Total Electron Content
      • North American Total Electron Content
      • Relativistic Electron Forecast Model
      • SEAESRT
      • STORM Time Empirical Ionospheric Correction
      • WSA-Enlil Solar Wind Prediction
      • WAM-IPE
    • Observations
      • Boulder Magnetometer
      • GOES Electron Flux
      • GOES Magnetometer
      • GOES Proton Flux
      • GOES Solar Ultraviolet Imager (SUVI)
      • GOES X-ray Flux
      • LASCO Coronagraph
      • Planetary K-index
      • Real Time Solar Wind
      • Satellite Environment
      • Solar Synoptic Map
      • Space Weather Overview
      • Station K and A Indices
    • Summaries
      • Solar Region Summary
      • Summary of Space Weather Observations
    • Alerts, Watches and Warnings
      • Alerts, Watches and Warnings
      • Notifications Timeline
    • Experimental
      • ACE Real-Time Solar Wind
      • Aurora Viewline for Tonight and Tomorrow Night
      • GloTEC
      • International Civil Aviation Organization (ICAO) Space Weather Advisory
      • Solar TErrestrial RElations Observatory (STEREO)
    • Data Access
  • Dashboards
    • Aurora
    • Aviation
    • Electric Power
    • Emergency Management
    • Global Positioning System
    • Radio
    • Satellites
    • Space Weather Enthusiasts
  • Media and Resources
    • Education and Outreach
    • Glossary
    • News Archive
    • Newsroom
  • Subscribe
  • Annual Meeting
  • Feedback

NOAA Scales mini

Space Weather Conditions

on NOAA Scales

24-Hour Observed Maximums

R

no data

S

no data

G

no data

Latest Observed

R

no data

S

no data

G

no data

R1-R2--
R3-R5--
S1 or greater--

G

no data

R1-R2--
R3-R5--
S1 or greater--

G

no data

R1-R2--
R3-R5--
S1 or greater--

G

no data

R

no data

S

no data

G

no data

Current Space Weather Conditions

on NOAA Scales

R1 (Minor) Radio Blackout Impacts

HF Radio: Weak or minor degradation of HF radio communication on sunlit side, occasional loss of radio contact.
Navigation: Low-frequency navigation signals degraded for brief intervals.

More about the NOAA Space Weather Scales

The NOAA Space Weather Scales were introduced as a way to communicate to the general public the current and future space weather conditions and their possible effects on people and systems. Many of the SWPC products describe the space environment, but few have described the effects that can be experienced as the result of environmental disturbances. These scales are useful to users of our products and those who are interested in space weather effects. The scales describe the environmental disturbances for three event types: geomagnetic storms, solar radiation storms, and radio blackouts. The scales have numbered levels, analogous to hurricanes, tornadoes, and earthquakes that convey severity. They list possible effects at each level. They also show how often such events happen, and give a measure of the intensity of the physical causes.


NOAA Scales in PDF format

Hide introduction

Geomagnetic Storms

Scale Description Effect Physical measure Average Frequency
(1 cycle = 11 years)
G 5 Extreme

Power systems: Widespread voltage control problems and protective system problems can occur, some grid systems may experience complete collapse or blackouts. Transformers may experience damage.

Spacecraft operations: May experience extensive surface charging, problems with orientation, uplink/downlink and tracking satellites.

Other systems: Pipeline currents can reach hundreds of amps, HF (high frequency) radio propagation may be impossible in many areas for one to two days, satellite navigation may be degraded for days, low-frequency radio navigation can be out for hours, and aurora has been seen as low as Florida and southern Texas (typically 40° geomagnetic lat.).

Kp = 9 4 per cycle
(4 days per cycle)
G 4 Severe

Power systems: Possible widespread voltage control problems and some protective systems will mistakenly trip out key assets from the grid.

Spacecraft operations: May experience surface charging and tracking problems, corrections may be needed for orientation problems.

Other systems: Induced pipeline currents affect preventive measures, HF radio propagation sporadic, satellite navigation degraded for hours, low-frequency radio navigation disrupted, and aurora has been seen as low as Alabama and northern California (typically 45° geomagnetic lat.).

Kp = 8, including a 9- 100 per cycle
(60 days per cycle)
G 3 Strong

Power systems: Voltage corrections may be required, false alarms triggered on some protection devices.

Spacecraft operations: Surface charging may occur on satellite components, drag may increase on low-Earth-orbit satellites, and corrections may be needed for orientation problems.

Other systems: Intermittent satellite navigation and low-frequency radio navigation problems may occur, HF radio may be intermittent, and aurora has been seen as low as Illinois and Oregon (typically 50° geomagnetic lat.).

Kp = 7 200 per cycle
(130 days per cycle)
G 2 Moderate

Power systems: High-latitude power systems may experience voltage alarms, long-duration storms may cause transformer damage.

Spacecraft operations: Corrective actions to orientation may be required by ground control; possible changes in drag affect orbit predictions.

Other systems: HF radio propagation can fade at higher latitudes, and aurora has been seen as low as New York and Idaho (typically 55° geomagnetic lat.).

Kp = 6 600 per cycle
(360 days per cycle)
G 1 Minor

Power systems: Weak power grid fluctuations can occur.

Spacecraft operations: Minor impact on satellite operations possible.

Other systems: Migratory animals are affected at this and higher levels; aurora is commonly visible at high latitudes (northern Michigan and Maine).

Kp = 5 1700 per cycle
(900 days per cycle)

Solar Radiation Storms

Scale Description Effect Physical measure
(Flux level of >= 10 MeV particles)
Average Frequency
(1 cycle = 11 years)
S 5 Extreme

Biological: Unavoidable high radiation hazard to astronauts on EVA (extra-vehicular activity); passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk.

Satellite operations: Satellites may be rendered useless, memory impacts can cause loss of control, may cause serious noise in image data, star-trackers may be unable to locate sources; permanent damage to solar panels possible.

Other systems: Complete blackout of HF (high frequency) communications possible through the polar regions, and position errors make navigation operations extremely difficult.

105 Fewer than 1 per cycle
S 4 Severe

Biological: Unavoidable radiation hazard to astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk.

Satellite operations: May experience memory device problems and noise on imaging systems; star-tracker problems may cause orientation problems, and solar panel efficiency can be degraded.

Other systems: Blackout of HF radio communications through the polar regions and increased navigation errors over several days are likely.

104 3 per cycle
S 3 Strong

Biological: Radiation hazard avoidance recommended for astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk.

Satellite operations: Single-event upsets, noise in imaging systems, and slight reduction of efficiency in solar panel are likely.

Other systems: Degraded HF radio propagation through the polar regions and navigation position errors likely.

103 10 per cycle
S 2 Moderate

Biological: Passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation risk.

Satellite operations: Infrequent single-event upsets possible.

Other systems: Small effects on HF propagation through the polar regions and navigation at polar cap locations possibly affected.

102 25 per cycle
S 1 Minor

Biological: None.

Satellite operations: None.

Other systems: Minor impacts on HF radio in the polar regions.

10 50 per cycle

Radio Blackouts

Scale Description Effect Physical measure Average Frequency
(1 cycle = 11 years)
R 5 Extreme

HF Radio: Complete HF (high frequency) radio blackout on the entire sunlit side of the Earth lasting for a number of hours. This results in no HF radio contact with mariners and en route aviators in this sector.

Navigation: Low-frequency navigation signals used by maritime and general aviation systems experience outages on the sunlit side of the Earth for many hours, causing loss in positioning. Increased satellite navigation errors in positioning for several hours on the sunlit side of Earth, which may spread into the night side.

X20
(2 x 10-3)
Less than 1 per cycle
R 4 Severe

HF Radio: HF radio communication blackout on most of the sunlit side of Earth for one to two hours. HF radio contact lost during this time.

Navigation: Outages of low-frequency navigation signals cause increased error in positioning for one to two hours. Minor disruptions of satellite navigation possible on the sunlit side of Earth.

X10
(10-3)
8 per cycle
(8 days per cycle)
R 3 Strong

HF Radio: Wide area blackout of HF radio communication, loss of radio contact for about an hour on sunlit side of Earth.

Navigation: Low-frequency navigation signals degraded for about an hour.

X1
(10-4)
175 per cycle
(140 days per cycle)
R 2 Moderate

HF Radio: Limited blackout of HF radio communication on sunlit side, loss of radio contact for tens of minutes.

Navigation: Degradation of low-frequency navigation signals for tens of minutes.

M5
(5 x 10-5)
350 per cycle
(300 days per cycle)
R 1 Minor

HF Radio: Weak or minor degradation of HF radio communication on sunlit side, occasional loss of radio contact.

Navigation: Low-frequency navigation signals degraded for brief intervals.

M1
(10-5)
2000 per cycle
(950 days per cycle)
NOAA Space Weather Scales | NOAA (2024)

FAQs

What type of storm does the NOAA Space Weather Scale stand for? ›

NOAA categorizes Solar Radiation Storms using the NOAA Space Weather Scale on a scale from S1 - S5. The scale is based on measurements of energetic protons taken by the GOES satellite in geosynchronous orbit.

What is a level 5 solar storm? ›

The NOAA Geomagnetic Storm Scale indicates the severity of geomagnetic storms. It is denoted by a G followed by a number from 1 to 5, with 1 being a minor event, and 5 being an extreme event. Power systems: Weak power grid fluctuations can occur.

What is the G class of a solar flare? ›

The G-scale used by the U.S. National Oceanic and Atmospheric Administration, which rates the storm from G1 to G5 (i.e. G1, G2, G3, G4, G5 in order), where G1 is the weakest storm classification (corresponding to a Kp value of 5), and G5 is the strongest (corresponding to a Kp value of 9).

What would a Carrington event do today? ›

If a Carrington storm occurred today, it would have significant consequences for our digital, hyper-connected society. An extreme solar event could lead to global air traffic restrictions because of heightened radiation doses at altitude.

What are the three types of space weather? ›

Rather than the more commonly known weather within our atmosphere (like rain, snow, heat, and wind), space weather can come in the form of radio blackouts, solar radiation storms, and geomagnetic storms caused by disturbances from the Sun.

What would a G5 solar storm do to Earth? ›

With a G5 storm, complete blackouts and power grid collapses are possible. With a G4, aurora can be seen as low in the U.S. as Alabama or northern California, while auroras can possibly be seen from as low as Florida and south Texas with a G5 storm.

When was the last G5 solar storm? ›

The strongest geomagnetic storm in over two decades dazzled scientists and sky-watchers alike in May 2024. The G5 storm culminated in a remarkable display of the aurora borealis overnight on May 10–11, visible from many areas worldwide, including latitudes where sightings of auroras are uncommon.

What are the odds of the Carrington event happening? ›

Based on the readings, the researchers concluded that Carrington-level events likely occur once every 100 to 1000 years. However, without knowing exactly how powerful the event was, scientists can only make educated guesses about how common solar outbursts of its kind may be.

What is the NASA warning for 2024? ›

Nasa has issued a critical warning about a significant near-Earth asteroid, 2024 JV33, which is set to make its closest approach on August 19. This asteroid, comparable in size to a building at approximately 620 feet across, is expected to pass Earth at a distance of about 2,850,000 miles.

Has there ever been an X10 solar flare? ›

Examples of large solar flares

Using these magnetometer readings, its soft X-ray class has been estimated to be greater than X10 and around X45 (±5). In modern times, the largest solar flare measured with instruments occurred on 4 November 2003.

What was the largest solar flare ever recorded? ›

At 4:51 p.m. EDT, on Monday, April 2, 2001, the sun unleashed the biggest solar flare ever recorded, as observed by the Solar and Heliospheric Observatory (SOHO) satellite. The flare was definitely more powerful than the famous solar flare on March 6, 1989, which was related to the disruption of power grids in Canada.

What would happen if an M class solar flare hit Earth? ›

Small, C-class flares occur all the time and are too weak to affect the Earth, while mid-sized M-class flares can produce minor radio disruptions. X-class flares, meanwhile, are the largest explosions in the solar system, releasing up to a billion hydrogen bombs worth of energy.

What is a space storm called? ›

Such changes were termed Geomagnetic Storms as far back as the 19th century because they caused strong episodic gusts of compass needles that were unexplained until the 20th century when the solar wind was finally discovered.

Does geomagnetic storm affect humans? ›

The small number of very high energy particles that does reach the surface does not significantly increase the level of radiation that we experience every day. The most serious effects on human activity occur during major geomagnetic storms.

What hurricane model does NOAA use? ›

The Hurricane Analysis and Forecast System (HAFS) is NOAA's next-generation numerical model and data assimilation system developed within the framework of the Uniform Forecast System (UFS).

What does a G4 geomagnetic storm do? ›

G4-scale storms like the one detected this morning can have adverse effects on satellites, power grids and radio communication systems, NOAA added. Fortunately, most of these impacts are mitigable with advanced warning.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Foster Heidenreich CPA

Last Updated:

Views: 6442

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Foster Heidenreich CPA

Birthday: 1995-01-14

Address: 55021 Usha Garden, North Larisa, DE 19209

Phone: +6812240846623

Job: Corporate Healthcare Strategist

Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.